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[1] The spatial and temporal patterns associated with motion of the shadow of Phobos
across the surface of Mars are quite different than those associated with solar eclipses on
Earth. We present a simple analysis of variations in the position, velocity, size, and shape
of the shadow. Simple expressions give reasonably accurate depictions of the shadow
motion, which mainly consists of a subdiurnal longitude cycle and an annual latitude
cycle. Over most of each year, there are an average of 3.22 shadow transits per day. The
duration of the shadow transit depends on latitude. It is maximum at the equator and
is then 11.8% of the orbital synodic period. As the subsolar point moves north, the shadow
moves south, and vice versa. There is a narrow band, centered on the equator of Mars,
within which every point is eclipsed at least once during each semiannual eclipse season.
Outside that band, the density of coverage decreases slowly with increasing distance
from the equator, until the limiting latitudes are reached. During epochs, like the present,
when the obliquity of Mars is in excess of 21.2�, there are portions of each year during
which no eclipses occur. As the obliquity increases beyond that transition value, the
durations of the eclipse seasons decrease. The minimum possible eclipse season duration,
expressed as a fraction of the Mars year, is the same as the maximum shadow transit
duration, expressed as a fraction of the Phobos synodic period, since both ratios depend on
the same geometry, which is essentially just the radius of the orbit of Phobos, compared to
the radius of Mars.
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The Sun spins mindlessly overhead, the shadows lengthen and
shorten as if by plan.

John Gardner, Grendel

1. Introduction

[2] The shadows cast on the surface of Mars by its natural
satellites, Phobos and Deimos, can provide information
about relative positions of the Sun, Mars and the satellite
casting the shadow. Accurately timed observations of these
shadows by orbiting or landed spacecraft can provide
positional information for the spacecraft. The durations
and intensities of the shadows can act as probes of atmo-
spheric conditions and subsurface thermal properties in the
vicinity. Solar eclipse phenomena on Mars are sufficiently
different from those on Earth that terrestrial eclipse experi-
ence is a poor guide. We present a simple analysis of the
spatial and temporal patterns of eclipses on Mars and briefly
comment on upcoming opportunities for observing these
phenomena.

[3] For solar eclipses on Earth, there is a quite extensive
literature describing the basic phenomenology [Zirker, 1984;
Harrington, 1997; Maunder and Moore, 1999; Steel and
Davies, 2001], as well as applications to a wide range of solar
[Sykora et al., 2003; Katsiyannis et al., 2003] and terrestrial
phenomena [Goodwin and Hobson, 1978; Bamford,
2001]. Despite past use of the shadow of Phobos to probe
thermal properties of the shallow subsurface of Mars [Betts
et al., 1995], and a recent suggestion of how it could be
used to help locate a lander on the surface of Mars
[Christou, 2002], we have been unable to find any general
account of the behavior of eclipses on Mars, and have thus
undertaken to produce a brief description of how the size,
shape, and orientation of the shadow of Phobos varies with
time, and how it moves across the surface of Mars.
[4] The frequency, intensity, and areal extent of solar

eclipses are determined by the orbital parameters governing
the geometry necessary to generate an eclipse. The relative
motions of the primary and satellite determine eclipse
frequency, while the physical dimensions of the satellite,
and the radius of its orbit determine the properties of the
shadow. The orbital conditions required for solar eclipses on
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Earth occur only rarely, with an average of 2.38 total and
partial eclipses per year. At present, the lunar orbital radius
is such that the apparent angular diameter of the Moon, as
seen from Earth, approximates that of the solar disc. The
lunar shadow consists of a dark, inner umbral cone, and a
less dark outer penumbral cone. Eclipses occur when the
lunar shadow cone intersects the surface of Earth. Total
solar eclipses arise when the umbral cone reaches Earth’s
surface, and the Moon fully covers the Sun. However, total
eclipses are infrequent due to the orbital alignments required
for the umbral shadow to intersect Earth’s surface. Partial
eclipses are lower in intensity, but have vastly greater areal
coverage than total eclipses making them more commonly
observed than total eclipses.
[5] The size and orbital radius of Phobos are such that the

umbral cone never reaches the surface of Mars, as is
schematically illustrated in Figure 1. As a result, Mars
never experiences total solar eclipses, but partial eclipses
of the Sun by Phobos occur very often. The orbit of
Phobos, with a mean radius of 2.76 Mars radii, negligible
eccentricity, and small inclination, provides a favorable
eclipse environment. Over much of each year, Mars aver-
ages 3.22 eclipses per day. In 1977, the Viking Lander
(VL1) camera system observed 3 Phobos eclipse events, on
20, 24, and 28 September. On Earth, one would never see a
series of eclipses at one location over such a short time
scale. However, on Mars it is even possible to see two
eclipses in one day at appropriate locations. One of the
goals of the present study is to develop a simple model of
the spatio-temporal patterns of eclipses with which we can
address the likelihood of observing a sequence of eclipses,
similar to that observed by Viking 1, at a single site.
[6] The size and shape of the shadow of Phobos on the

surface of Mars, and the direction and speed of motion of
that shadow across the surface all change over a range of
time scales which are determined by the geometry of the
orbits, and the rotation of Mars. As a result, the shadow
geometry and motion vary with time of day, and time of
year. On much longer time scales, the obliquity of Mars
changes appreciably, and the orbit of Phobos is shrinking.
These long period and secular trends also influence the
eclipse phenomenology. Our main focus will be on the

behavior at the present epoch, and we will only briefly
consider the longer period trends, and mainly use them to
illustrate properties of the present situation.
[7] Among the questions we will address in this study

are: How does the size, and shape of the shadow change
with time? What is the pattern of motion of the shadow?
What fraction of the surface of Mars experiences an
eclipse event over the course of a year? How do the
spatial and temporal patterns vary with changing obliquity
values?
[8] Our objectives are somewhat qualitative, and we seek

to present a general overview of Mars eclipse phenomena.
As a result, we apply a series of approximations that would
be inappropriate for purposes requiring much greater
numerical accuracy, such as predicting the actual time
and place of eclipse events, or modeling light curves. In
particular we assume circular orbits, with Phobos residing
in the Mars equatorial plane, and treat Mars, Phobos, and
the Sun as spheres. This does, of course, introduce some
errors, but the general picture presented is essentially
correct.
[9] Quite accurate models of the present motion of

Phobos are available [Jacobson et al., 1989; Jacobson,
1996; Morley, 1990; Chapront-Touze, 1990]. The long
term tidal evolution is reasonably well understood [Burns,
1972, 1977, 1978; Lambeck, 1979; Cazenave et al., 1980;
Szeto, 1983; Yokoyama, 2002]. As Phobos is currently
within the synchronous orbital distance, tides are transfer-
ring angular momentum from the orbit of Phobos to the
spin of Mars, and the orbit is shrinking. On intermediate
time scales of 104 to 106 years, the obliquity of Mars
oscillates considerably [Ward, 1973, 1992; Touma and
Wisdom, 1993; Laskar and Robutel, 1993] and that will
influence the annual cycle of Phobos shadow latitudinal
motions.
[10] The spatial and temporal patterns exhibited by the

shadow of Phobos are somewhat complex, in detail, but
much of this behavior can be understood as a superposition
of several simpler components. We first consider the size
and shape of the shadow. Next we examine patterns of
motion of the shadow in longitude and latitude. Finally, we
bring all these components together and examine the annual
cycle of shadow coverage.
[11] The remainder of this paper is divided into five

sections. In section 2, we describe the basic geometry and
how that influences the size and shape of the shadow. In
section 3, we examine the rapid longitudinal motion and
annual latitudinal motion of the shadow, considering them
first separately and then together. In section 4, we combine
the position and size patterns to assess the annual pattern of
shadow coverage. In section 5 we discuss possible applica-
tions of observations of the shadow of Phobos. In section 6,
we briefly summarize the results.

2. Shadow Size and Shape

[12] In this section we begin an examination of the
variations in size and shape of the shadow cast by Phobos
on Mars. A simplifying feature of this aspect of the eclipse
phenomenology at Mars is that the size and shape of the
shadow each depend mainly on a single parameter, which is

Mars

Phobos

Sun

Figure 1. Shadow cone geometry. Within the umbral
cone, with apex to the left of Phobos, the Sun is completely
obscured. Within the penumbral cone, with apex to the right
of Phobos, the Sun is only partially obscured. Since the
umbral cone does not reach the surface of Mars at present,
all eclipses there are partial.
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the angular separation between the subsolar point and the
center of the shadow.

2.1. Angular Size of Phobos

[13] Due to a well-known (but still poorly understood)
optical illusion, the Moon appears larger when it is near the
horizon than when it is near zenith. That appearance is
misleading in two regards. In the first place, diurnal
variations in lunar range from a surface point on Earth are
small compared to monthly variations due to orbital eccen-
tricity. In addition, the Moon is actually closer when it
appears overhead than when it is on the horizon. Due to the
smaller size of the orbit of Phobos, compared to the radius
of Mars, this effect is much more pronounced at Mars than
in the Earth-Moon system.
[14] The size of the shadow cast by Phobos is determined

by the satellite’s distance from the surface, and its physical
dimensions. The figure of Phobos is well approximated by a
triaxial ellipsoid with radii of

r1; r2; r3f g ¼ 9:3; 11:1; 13:3f g km ð1Þ

along axes oriented perpendicular to the orbit plane, along
the velocity vector, and toward Mars, respectively [Duxbury
and Callahan, 1989]. The semimajor axis of the orbit of
Phobos is

a ¼ 9380 km: ð2Þ

As previously mentioned, we have assumed circular orbits
for Mars and Phobos. From the surface of Mars, which we
approximate as a sphere of radius R = 3390 km, the distance
to Phobos varies substantially, depending on zenith angle x.
The range r, from a point on the surface of Mars to the
center of Phobos, is a function of the orbital radius a, Mars
radius R, and the zenith angle x

r x½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � R2 sin2 x

q
� R cos x: ð3Þ

The greatest distance to Phobos, from a point on the surface
of Mars, occurs when Phobos is at the nadir of that surface
point, and is thus quite invisible. Over the range of mutual
visibility, the maximum range of 8746 km occurs when
Phobos is on the horizon, and the shortest distance,
5990 km, occurs when Phobos is at the local zenith. Using
the geometric mean of the two smaller radii (10.2 km) as a
physical dimension, the angular radius of Phobos varies
between a minimum of 0.067� at maximum distance, and a
maximum of 0.097� at minimum distance.
[15] From the surface of Mars, at a mean distance of

1.524 AU, the Sun, with a radius of 6.96 	 105 km,
subtends a disc with angular radius of 0.175�. As a
result of the variations in the apparent diameter of
Phobos, the solar area obscured by the Phobos disc as
it transits the Sun ranges from a low of 12.1% during a
transit near the horizon, to a high of 37.8% for a transit
near zenith.
[16] Note that, as the distance from a point on the surface

of Mars to Phobos increases, the angle subtended by Phobos
decreases. However, due to the divergent nature of the

penumbral cone, the size of the shadow increases with
increasing distance.

2.2. Shadow Shape

[17] We now consider variations in the shape of the
shadow. Many of the published images of the shadow of
Phobos [Betts et al., 1995] are quite elongated. Figure 2
shows a view of the shadow as seen on 26 August 1999 by
the Mars Orbiter Camera (MOC) instrument on the Mars
Global Surveyor (MGS) spacecraft. In that image, the
shadow is roughly elliptical with a 3:1 aspect ratio. Is this
degree of elongation of the shadow a common effect, and if
so, how does it arise?
[18] Variations in the shape of the shadow of Phobos, if

considered as a function of latitude, longitude, time of day
and time of year, will be seen to be quite complicated.
However, a change in perspective will prove quite helpful.
At the level of approximation in which the orbits are
considered to be circles and the bodies are spheres, the
shadow shape depends only on a single parameter; the
angular distance between the center of the shadow and
the subsolar point.
[19] If we were to view Mars along the axis of the

Phobos shadow cone, the shadow would appear very
nearly circular. If, instead, we view the shadow from
directly above its center, the shape of the shadow varies
as it moves across the surface of Mars in the course of a
single transit. If Phobos and Mars were both perfectly
spherical, the outline of the shadow would be represented
by the quartic curve which lies at the intersection of the
spherical surface of Mars and the circular penumbral cone.
If the cone axis contains the center of Mars, the shadow is
a circle. As the cone axis moves away from the center of
Mars, the shadow becomes roughly elliptical, with its long

Figure 2. Phobos shadow image. This image was acquired
by the Mars Observer Camera (MOC) on the Mars Global
Surveyor (MGS) spacecraft on 26 August 1999.
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axis along the great circle connecting the subsolar point to
the center of the shadow.
[20] Figure 3 illustrates the position of Phobos and its

shadow, as seen in a plane containing the Sun, the center of
Mars, and Phobos. If the Mars-Sun line is taken to be the x
axis, and the y axis is perpendicular to it, then the Cartesian
coordinates of the center of Phobos are

xp ¼ a cos b; ð4Þ

yp ¼ a sin b; ð5Þ

where b is the angular separation between Sun and Phobos,
as seen from the center of Mars. We consider the Cartesian
coordinates of three points on the shadow: the center of the
shadow, the point nearest the limb, and the point nearest the
subsolar point. We will refer to them as the principal points
of the shadow, and will use them to characterize the size and
shape of the shadow. What we call here the center of the
shadow is actually the shadow of the center of Phobos,
though it will often be close to the geometric center of the
shadow. We will examine the issue of asymmetry below.
[21] The coordinates of the shadow center are

xc ¼ R cosgc ¼ xp � rc; ð6Þ

yc ¼ R sin gc ¼ yp; ð7Þ

where gc is the angular separation, as seen from the center
of Mars, between the Sun and the shadow center, and rc is
the distance from Phobos to the shadow center. In similar
fashion, the coordinates of the point on the shadow nearest
the limb of Mars are

xb ¼ R cosgb ¼ xp � rb cosa; ð8Þ

yb ¼ R sin gb ¼ yp þ rb sina; ð9Þ

where rb is the distance from Phobos to the shadow point
nearest the limb and a is the shadow cone divergence angle.
Likewise, and the coordinates of the point on the shadow
nearest the subsolar point are

xs ¼ R cos gs ¼ xp � rs cosa; ð10Þ

ys ¼ R sin gs ¼ yp � rs sina; ð11Þ

where rs is the distance from Phobos to the shadow point
nearest the subsolar point.
[22] These equations yield simple solutions for the var-

iations in distance from Phobos and Mars-centered angles
from the subsolar point to each of the principal points. For
the center point we have

R sin gc ¼ a sin b; ð12Þ

rc ¼ a cos b� qc; ð13Þ

with

qc ¼ R cosgc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2 sin2 b

q
: ð14Þ

The corresponding values for the limbmost shadow point
are

R cosgb ¼ a sina sin aþ bð Þ þ qb cosa; ð15Þ

rb ¼ a cos aþ bð Þ � qb; ð16Þ

with

qb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2 sin2 aþ bð Þ

q
: ð17Þ

For the principal point nearest the subsolar point, the
parameters are

R cos gs ¼ a sina sin a� bð Þ þ qs cosa; ð18Þ

rs ¼ a cos a� bð Þ � qs; ð19Þ

with

qs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2 sin2 a� bð Þ

q
: ð20Þ

[23] The angular extent of the shadow along the short
axis, or width, is now easy to estimate. Using the above
results, we can write

R sinDgw ¼ rc sina; ð21Þ

where Dgw is the angular separation, as seen from the center
of Mars, between the shadow center and either of the
shadow edge points along the great circle perpendicular to
the long axis.

Figure 3. Shadow geometry relevant to shadow shape
variations. The angle subtended at the center of Mars
between Sun and Phobos is b; the angle between Sun and
shadow is g. The 3 closely spaced lines correspond to the
principal points of the shadow. The center of the shadow is
shown by a solid line, and the dashed lines indicate the
limbmost point and the Sunmost point on the shadow
perimeter.
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[24] Using the angles defined above, the shape of the
shadow of Phobos can be parameterized in terms of the
aspect ratios of the Sunward and limbward portions as

hs ¼
gc � gs

Dgw
; ð22Þ

hb ¼
gb � gc

Dgw
; ð23Þ

and the overall shape can be parameterized in term of the
aspect ratio of the complete shadow

h ¼ 1

2
hb þ hsð Þ ¼ gb � gs

2 Dgw
: ð24Þ

Figure 4 illustrates the variations in these parameters as a
function of gb which is the angular separation between the
subsolar point and the limbmost point of the shadow of
Phobos. Several features deserve comment. The shadow is
circular at the subsolar point and becomes more elongated
as it moves toward the limb. For small departures from
circularity, the shadow is very nearly elliptical. As it
becomes more elongated, it departs somewhat from the
elliptical pattern and becomes somewhat asymmetric, with
the center point closer to the subsolar principal point and
farther from the limbmost principal point. As the shadow
touches the limb, it has an aspect ratio of nearly 6:1. Of
course, in this limit some of our approximations become
problematic. In particular, the surface topography of Mars
will severely distort the shadow as it approaches the limb.
However, it is worth noting that the shadow is quite
elongated much of the time.
[25] With this information, we now return to Figure 2,

and attempt to understand the amount and direction of
elongation of the shadow image. The aspect ratio of the

shadow is roughly 3:1. This might appear, from Figure 4, to
suggest that the center of the shadow is 60�–70� from the
subsolar point. However, examination of shadows within
craters suggests otherwise. In fact, the image was acquired
at roughly 2 PM local time. The resolution of this dilemma
is that MOC is a line-array or push-broom camera, and the
image was acquired one row at a time. The MGS spacecraft
was moving mainly in a north-south direction, while Phobos
and its shadow were moving mainly in an east-west direc-
tion, but at a slower rate. This caused the image of a nearly
circular shadow to appear quite elongated. In fact, the MOC
wide angle camera has imaged the shadow of Phobos
hundreds of times. The ratio of the synodic periods of
Phobos and MGS is roughly 3.905, and the shadow is
imaged roughly every 39th orbit of MGS, or every 10th
orbit of Phobos. In all of those images, the shadow is
elongated by the relative motion of the spacecraft and the
shadow.

3. Shadow Motion

[26] We now turn our attention to the motion of the
shadow across the surface of Mars. We will first examine
the motions of Phobos and Sun across the sky, as seen from
Mars. Next we consider the rapid longitudinal motions of the
shadow, due to the orbital motions of Phobos and the rotation
of Mars. After that, we consider the annual cycle of latitu-
dinal shadow motion. Finally, we combine the two motions
to generate a simple model of the latitudinal and longitudinal
pattern of shadow paths across the surface of Mars.

3.1. Angular Rates of Sun and Phobos

[27] Motion of the shadow of Phobos depends on the
relative motions, as seen from a point on Mars, between the
Sun and Phobos. The angular speed of the Sun, as seen in a
Mars fixed reference frame, is

s ¼ nm � sm; ð25Þ

where

nm ¼ 0:524033035 deg=day ð26Þ

is the sidereal orbital mean motion of Mars, and

sm ¼ 350:891983 deg=day ð27Þ

is the sidereal spin rate of Mars. The resulting angular rate is

s ¼ �350:367950 deg=day: ð28Þ

The negative sign implies that the Sun rises in the east and
sets in the west.
[28] The mean angular speed of Phobos, as seen in a

reference frame rotating with Mars, and coincident with the
center of Mars, is

p ¼ np � sm; ð29Þ

where

np ¼ 1128:8444155 deg=day ð30Þ

Figure 4. Variations in shadow aspect ratio. The central
curve represents the average aspect ratio, or ratio of long
axis to short axis lengths for the shadow of Phobos, and is
shown as a function of gb, which is the angular separation
between the subsolar point and the limbmost point on the
shadow perimeter. The other two curves give the same ratio,
but for the portions of the shadow which lie Sunward and
limbward of the center.
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is the sidereal orbital mean motion of Phobos. The resulting
mean rate is

p ¼ 777:9524325 deg=day: ð31Þ

The positive sign implies that Phobos rises in the west and
sets in the east.

3.2. Subdiurnal Longitude Cycle

[29] The most rapid change in position of the shadow is
that associated with the motion of Phobos around its orbit
and the rotation of Mars. As a first approximation, suppose
that the obliquity of Mars were zero. In that case, the motion
of the shadow of Phobos would be extremely simple. The
center of the shadow will always lie on the equator, and will
move from west to east across the surface of Mars at a
variable rate. The most rapid movement will be just as the
shadow moves onto, or off of, the surface of Mars and will
be slowest when the shadow crosses the location of local
noon. The central meridian crossings are uniformly spaced
in time, and occur at intervals of

Dt ¼ 2p
np � nm

¼ 0:319058 day; ð32Þ

where np and nm are the mean motions of Phobos and Mars,
respectively.
[30] As shown in Figure 5, the beginning and end of a

shadow transit correspond approximately to times when the
angular separation b between the center of the solar disc and
the center of the Phobos disc are such that

a sin b ¼ R: ð33Þ

As a result, the shadow transit duration dt comprises a
fraction

dt
Dt

¼ 1

p
sin�1 R

a

� �
¼ 0:11785 ð34Þ

of the total orbit duration. If Mars were in synchronous
rotation with the Sun, each shadow path would cover 180�
of longitude. However, the more rapid rotation of Mars, at
the rate sm, shortens the shadow path by the amount that
Mars rotates, relative to the Sun, during the shadow transit,
which amounts to 13.17�. In this simple case, a shadow
stripe 166.83� long would occur every 7.66 hours. The
centers of successive pairs of these stripes would be offset
in longitude by

Df ¼ Dt sm � nmð Þ ¼ 111:788�: ð35Þ

As we will see subsequently, this simple model is a
reasonably good approximation to the longitudinal motion
of the shadow, even in the case of finite obliquity.

3.3. Annual Latitude Cycle

[31] We now consider the variations in latitude of the
center point of the shadow over the annual cycle. Figure 6
illustrates the orientation of the orbit of Phobos, as seen
from a perspective directly above the subsolar point, at
15 times uniformly spaced throughout the year. The latitude
qs of the subsolar point on Mars changes throughout the year,
and that influences the latitude of the shadow of Phobos. The
annual cycle of subsolar latitude can be easily computed as a
function of solar longitude Ls, which is measured from
northern hemisphere vernal equinox, and the obliquity e of
Mars, or angular separation between spin pole and orbit pole.
The relationship is

sin qs ¼ sin e sin Lsð Þ; ð36Þ

Figure 5. Longitudinal shadow motion. The heavy line
along the orbit of Phobos indicates the portion of the orbit
during which the shadow cone intersects the surface of
Mars.

Figure 6. Views of Phobos orbit from the direction of the
Sun. The gray disk represents Mars, and the elliptical curves
represent the orbit of Phobos, as seen from a point directly
above the sun-solar point, at 15 times uniformly spaced
throughout the Mars year. Note that when viewed from
some directions, the orbit does not project onto the surface
of Mars.
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where

e ¼ 25:2� ð37Þ

is the current value of Mars obliquity.
[32] If we treat the Sun as though it were at infinite

distance, then a necessary condition for an eclipse to occur
at a specified point on the surface of Mars is that the
distance of Phobos from the Mars-Sun line is equal to the
distance of the surface point from that line. That condition
will be met whenever

a sin dp
� �

¼ R sin dmð Þ; ð38Þ

where a is the semimajor axis of the Phobos orbit, R is the
mean radius of Mars, and the angles dp and dm are the Mars-
centered distances from the Sun to Phobos and the surface
point, respectively.
[33] If we make the approximation that Phobos lies in the

equator plane of Mars, then

dp ¼ �qs ð39Þ

and the latitude of the surface point is simply the difference
between those angles

qu ¼ dm � dp: ð40Þ

Combining these results, we find that the latitude of the
shadow center as it crosses the central meridian is a simple
function of subsolar latitude and a fairly simple function of
mean solar longitude:

qu Lsð Þ ¼ qs Lsð Þ � sin�1 a

R
sin qs Lsð Þ

h i
: ð41Þ

Figure 7 illustrates this pattern. The obliquity value at which
the center of the shadow path just passes off the planet at the
summer and winter solstices is

ec ¼ arcsin
R

a

� �
¼ 21:21�: ð42Þ

For obliquity values less than this, each orbit of Phobos will
generate a shadow transit across the surface. For obliquity
values greater than ec there will be an extended length of
time each year when there are no eclipse events.
[34] In this latter case, the annual pattern of eclipses will

be characterized by two ‘‘eclipse seasons’’ when the Mars
surface experiences an average of 3.22 eclipses per day, and
two ‘‘no-eclipse seasons’’ when the orientation of the
Phobos orbit is such that no point in the orbital track will
generate a shadow that intersects the surface of Mars. The
greater the obliquity value, in excess of the transition value,
the longer the interval between eclipse seasons, as shown in
Figure 7. At the present value of Mars obliquity, there is a
122 day time span between eclipse seasons twice per year,
with the midpoints of the no-eclipse intervals occurring at
the summer and winter solstices.
[35] If the obliquity were increased beyond the value at

which ‘‘no-eclipse seasons’’ just begin, the duration of the
eclipse seasons continues to diminish, but does not go to
zero. The durations of eclipse seasons and the durations of
individual shadow transits are both determined by the same
basic geometry. As a result, the minimum duration of an
eclipse season, expressed as a fraction of a year, is the same
as the maximum duration of a single transit, expressed as a
fraction of the Phobos orbital period. Both of those frac-
tional durations depend only on the ratio of the orbital
semimajor axis of Phobos to the radius of Mars, which is
approximately 2.76.

3.4. Two-Dimensional Shadow Motion

[36] We now start an exploration of the full motion of the
shadow of Phobos, in which the latitudinal and longitudinal
cycles are coupled. In previous sections we have separately
considered the fast longitudinal cycle and slow latitudinal
cycle of shadow motion, exploiting the wide difference in
time scales to approximate them as completely decoupled. If
those motions were fully decoupled, the shadow path would
be given by the superposition of the two cycles, with
roughly 3.2 shadow transits per day, and the shadow path
center point shifting steadily in longitude by 111.78� per
transit, and the latitude of the center point following the
annual cycle shown in Figure 7.
[37] There are two primary differences between the

uncoupled and coupled cases. First is that the duration
and longitudinal extent of the transits decreases as the
subsolar point moves poleward. Second is that the limbmost
edges of the transit paths curve away from the equator as the
shadow moves poleward. In this section we will restrict our
attention to the motion of the center of the shadow. In a
subsequent section we will combine this motion with
variations in the size, shape and orientation of the shadow
itself.
[38] The path of the shadow across the surface of Mars

can be derived from a simple model in which we follow the
intersection of the Sun-Phobos line with a spherical Mars. If

Figure 7. Latitudinal motion of shadow path centroid. The
curves represent the annual cycle of variation in latitude of
the shadow as it crosses the meridian containing the subsolar
point, for different values of obliquity. The obliquity values
range from 0 to 45�, in steps of 5�. The dashed line is for the
transition obliquity of 21.21�, at which the shadow cone just
passes poleward of the planet. At higher obliquities, there are
gaps in the eclipse sequence.

E04004 BILLS AND COMSTOCK: SOLAR ECLIPSES BY PHOBOS ON MARS

7 of 12

E04004



P and S are points at the centers of Phobos and the Sun, then
a parametric equation representing the line through them is

Q ¼ P þ u S � Pð Þ; ð43Þ

where u is a parameter which specifies position along the
line. When u = 0, the equation yields the position of
Phobos, and when u = 1, it produces the position of the Sun.
If we take the center of Mars to be our coordinate origin,
and let the orbit plane of Mars define the x-y plane, then the
intersection of the sphere of radius R with the line along the
shadow axis is given by the condition

Q � Q ¼ R2: ð44Þ

If this condition is written explicitly in terms of the
parameter u, we obtain a quadratic equation of the form

a u2 þ b uþ c ¼ 0; ð45Þ

where

a ¼ S � Pð Þ � S � Pð Þ; ð46Þ

b ¼ 2 P � S � Pð Þ; ð47Þ

c ¼ P � P � R2: ð48Þ

The discriminant of this equation is

d ¼ b2 � 4 a c: ð49Þ

The value of this parameter tells a good deal about the
geometry. There will be two solutions for the parameter u,
and two corresponding points of intersection, if d > 0. The
two intersection points are on opposite sides of Mars, and
only one of them is shadowed by Phobos. If d = 0, there is a
single solution, and a single intersection point. If d < 0,
there are no real solutions to the equation, and no
intersection. The condition for the line being tangent to
the sphere, and thus marking the approximate beginning or
end of a shadow transit is thus d = 0.
[39] If the discriminant is positive, then the Phobos-Sun

line intersects the sphere at two points, corresponding to
values of the line parameter

u ¼ �b

ffiffiffi
d

p

2a
: ð50Þ

The shadow of Phobos will fall on the surface of Mars if, in
addition, the Sun and Phobos are on the same side of Mars,
so that

P � S > 0: ð51Þ

In that case, the shadow is located at the point of
intersection with the line which is given by the further
conditions

P � Q > 0; ð52Þ

S � Q > 0; ð53Þ

which simply specify that both the Sun and Phobos are
visible from the shadow point.
[40] Our next task is to obtain an explicit expression for

the discriminant. If we denote rotation matrices

R1 a½ � ¼
1 0 0

0 cosa � sina
0 sina cosa

2
4

3
5; ð54Þ

R3 a½ � ¼
cosa � sina 0

sina cosa 0

0 0 1

2
4

3
5; ð55Þ

then the position of the Sun at time t will be given by

S t½ � ¼ am R3 nm t þ gm½ � � 1; 0; 0f gt; ð56Þ

where am and nm are the semimajor axis and mean motion of
the heliocentric orbit of Mars, and gm is a phase angle which
specifies the position of Mars at the time origin. In a similar
fashion, the position of Phobos is given by

P t½ � ¼ ap R3 ym½ � � R1 em½ � � R3 np t þ gp

 �

� 1; 0; 0f gt; ð57Þ

where ap, np and gp are the corresponding orbital parameters
of Phobos, and e m is the obliquity of the spin pole of Mars
and ym is the corresponding azimuthal angle. If these values
are substituted into the formula for the discriminant, it can
be written in the form

d t½ � ¼ d0 þ
X6
j¼1

dj cos sj t þ gj
� �

; ð58Þ

where the parameter values are listed in Table 1.
[41] Note that the six nonzero angular rates are easily

separated into three groups. There are three rapid terms,
with rates of 2(np � nm, np, np + nm) or roughly two cycles
per Phobos orbit, two medium speed terms, with rates of
(np � nm, np + nm) or one cycle per Phobos orbit, and one
slow term, with a rate of 2nm or two cycles per Mars orbit.
If the obliquity were zero, there would only be three
angular rates, 0, (np � nm) and 2(np � nm). A finite
obliquity introduces splitting in the spectrum, with new
frequencies offset by multiples of 2nm from the original
three. The side bands have smaller amplitudes.

Table 1. Fourier Series Representation of Discriminant Function

Index Amplitude
Rate,

deg/day
Period,
day

Phase,
deg Source

0 �7.57726 0
1 0.828711 1.04807 343.4898 2 nm
2 1.8765 10�4 1128.32 0.319058 np � nm
3 9.3759 10�6 1129.37 0.389762 np + nm
4 8.29307 2256.64 0.159529 2(np � nm)
5 0.828711 2257.69 0.159455 2 np
6 0.020703 2258.74 0.159381 2(np + nm)
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[42] Having an explicit time dependence for the shadow
axis discriminant function allows us to determine times at
which the shadow axis moves onto and off of the surface of
Mars. In order to obtain the trajectory across the surface of
Mars of the shadow center point, we need to take two more
basic steps. First, we solve for the Cartesian coordinates of
the intersection point of the shadow axis with the sphere
representing the surface of Mars. Then we convert from
inertially referenced Cartesian coordinates to body-fixed
polar coordinates.
[43] Figure 8 illustrates the latitude variations of the

shadow center point over one complete eclipse season. It
is a 222 day interval in which the shadow was moving from
south to north, and the latitude was computed at 60 second
intervals. At the scale of this image, each shadow transit is
very nearly a vertical line. Note that the latitudinal extent of
the shadow path is minimum at the equator and at the
maximum poleward excursions.

[44] Figure 9 illustrates the locations of the shadow
center evaluated at 20 second intervals over 3 separate
periods, each of 4 days duration, with 10 day offsets. The
middle interval was chosen to coincide with equator
crossing of the subsolar point. Note that, as shadow moves
poleward, the shadow path becomes more curved away
from the equator.
[45] The reason for that curvature is illustrated in

Figure 10, which shows an orbit of Phobos, as seen
from the direction of the Sun, along with lines of
constant latitude which coincide with the projection of
the orbit on the limb and the central meridian. As the orbit
becomes more inclined to the Mars-Sun line, the latitudes
at which the shadow path intersect the limb the central
meridian diverge.
[46] Note that the model presented in this section has

invoked several simplifying approximations. The main
theme being circular orbits and spherical bodies. If a more
accurate depiction of the trajectory of the center of the
shadow were desired, the only modifications required
would be replacing the simple orbits and planetary shape
models with better versions. The basic idea of following the
intersection point between the shadow cone axis and the
planetary surface would need no fundamental change.

4. Shadow Coverage

[47] In this section we combine the previous simplified
models of shadow size, shape, and centroid motion, and use
them as building blocks to construct a model with which to
address the full pattern of shadow coverage. One of the
questions which motivated the present study is the follow-
ing: how does the probability of seeing one or more eclipses
during the course of a year depend on the location of the
surface observer? In previous sections we have developed
tools to track the shadow centroid, as it moves across the
surface of Mars, but in order to address the coverage density
question, we need to include the finite width and variable
aspect ratio of the shadow.
[48] The axis defined by Phobos and the Sun determines

the location of the shadow of the center of Phobos, which
will be close to, but need not exactly coincide with, the
center of the shadow. The lateral extent of the shadow can
be computed by finding the intersection points between the
spherical surface of Mars and the lines which generate the
penumbral cone. As noted previously, the vertex of that
cone is slightly Sunward of Phobos, but we will approxi-

Figure 8. Latitudinal motion of shadow. This figure
illustrates the pattern of motion of the center of the
Phobos shadow over the course of a single eclipse season.
Shadow center location computed at 60 second intervals
for 240 days. At this scale a single shadow transit is
essentially a vertical line.

Figure 9. Shadow center motion. Each dot represents the
location of the shadow center at a distinct time. The times
represent 3 separate periods, each of 4 days duration, with
20 second sampling. The centers of the periods are
separated by 10 days.

Figure 10. Source of shadow path curvature. The orbit of
Phobos is seen from the direction of the Sun, along with the
disc of Mars and lines of constant latitude. The latitude of
the projection of the orbit onto Mars is different at the limb
and the central meridian.
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mate it as being located at the center of Phobos. To orient
the shadow cone we define the following unit vectors:

ê1 ¼
S � P

k S � P k ; ð59Þ

ê2 ¼
m̂	 ê1

k m̂	 ê1 k
; ð60Þ

ê3 ¼
ê1 	 ê2

k ê1 	 ê2 k
; ð61Þ

where S and P are the locations of Sun and Phobos, m̂ is a
unit vector along the spin pole of Mars, and

k x k¼
ffiffiffiffiffiffiffiffi
x � x

p
ð62Þ

is the length of the vector x. The parametric equations for a
circular cone can be written as

Q ¼ q1 ê1 þ q2 ê2 þ q3 ê3; ð63Þ

with components

q1 ¼ uD; ð64Þ

q2 ¼ uD c cos q; ð65Þ

q3 ¼ uD c sin q; ð66Þ

where u is the generating parameter defining distance from
the vertex,

D ¼k S � P k ð67Þ

is the distance between Sun and Phobos, c is the cone
opening parameter, and q is the azimuthal angle which
spans the perimeter of the shadow as its value ranges from
0 to 2p. The cone opening parameter c is a function of the

radii of the Sun and Phobos, and of the distance between
them D:

c ¼ tan�1 Rs þ Rp

D

� �
: ð68Þ

[49] To find the location and shape of the shadow at a
given time, we position Mars, Phobos and Sun at their
respective locations, compute the intersections (if any)
between a family of lines lying on the penumbral cone,
parameterized by the azimuthal angle q, and transform the
coordinates of each intersection point from inertial Carte-
sian to Mars body-fixed latitude and longitude pairs.
[50] If the shadow is completely on the surface of Mars,

then all values of q will yield positive discriminant values
and corresponding real valued Cartesian coordinates for the
intersection points. If the shadow is only partly on Mars,
then the outline of the shadow will have a truncated blunt
end. Figure 11 illustrates a part of the coverage of Mars
during a single eclipse season, with only every 10th eclipse
shown, to better illustrate the individual path shapes and
positions. During this season, the shadows were moving
from north to south. Note that, as the shadow moves toward
the equator, the shadow path becomes longer in longitudinal
extent, narrower in latitudinal extent, and straighter.
[51] Figure 12 illustrates the complete pattern of coverage

during the same eclipse season. Note that the fractional areal
coverage is complete at low latitudes (less than 2 degrees
from the equator), nearly uniform to quite high latitudes,
and then drops quite quickly to zero at the limiting latitude.
The locations of the mid-latitude gaps in coverage would be
different during the following eclipse season, since the orbit
period of Phobos and the rotation period of Mars are
incommensurate. Figure 13 shows the same pattern, but
viewed from the north pole.
[52] The total area covered at least once during an eclipse

season is considerably less than the sum of the areas of the
individual eclipses, since there is appreciable overlap. Even
at the highest latitude to which eclipses extend, a point on
the surface of Mars which experiences an eclipse has better
than even odds of experiencing a second eclipse during the
same eclipse season. As the rather uneven distribution of
eclipses depends sensitively on the ratio of the orbital period
of Phobos to the spin period of Mars, we can anticipate that
this pattern will change appreciably as the orbit of Phobos

Figure 11. Partial shadow coverage during an eclipse
season. Dark areas are regions of Mars covered by the
shadow of Phobos when only including every 10th shadow
transit. The partial coverage allows discrimination of the
shapes and relative locations of separate transit events.

Figure 12. Complete shadow coverage during an eclipse
season. Same as Figure 11, but showing aggregate coverage
of all eclipses during a single eclipse season.
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decays under tidal control. At present, the ratio of synodic
periods is 3.22039. When the orbital mean motion of
Phobos has increased to 1129.49�/day, and the synodic rate
ratio has increased to 3.25, the central longitude of every
fourth shadow transit will repeat. At that point in time, the
areal coverage of shadows during a single eclipse season
will look like Figure 14. The gaps in coverage are more
regularly spaced than at present, but the total amount of
coverage is not much different.

5. Applications

[53] Part of our motivation for examining the spatial and
temporal patterns associated with the motion of the shadow
of Phobos across the surface of Mars is that it is both
interesting and potentially useful but has not, to our knowl-
edge, been previously documented. Further justification is
that familiarity with those patterns can be useful in planning
for observations. Detailed planning of Phobos shadow
observation programs would, of course, require accurate
prediction of times and locations at which the shadow of
Phobos will appear, and thus necessitate use of accurate
models of the orbital motion. However, it is often difficult to
extract from such strictly numerical models a general
picture of the patterns of motion.
[54] One of the most obvious applications for observa-

tions of the shadow of Phobos is in determining positions. If
the position of the observing platform is known, then the
position of Phobos is constrained. If the observation point is
not well known, then the time of a shadow observation will
constrain the position of the observer. The latter strategy had
been planned for the Beagle 2 lander [Christou, 2002]. The
former strategy has been applied by the Spirit rover at
Gusev crater [Bell et al., 2004] and previously by the Viking
Lander 1 in September of 1977 [Jones et al., 1979; Snyder,

1979]. It is, in principle, possible to observe Phobos
shadows from orbit with several different types of instru-
ments. The Mars Observer Camera [Malin et al., 1992]
makes pole-to-pole scans of Mars in a wide angle viewing
mode nearly every orbit [Cantor et al., 2002]. Those images
have serendipitously captured the shadow of Phobos dozens
of times. The detector on the Mars Orbiter Laser Altimeter
[Zuber et al., 1992; Abshire et al., 2000] views the surface
of Mars in a narrow field of view, and has also captured
15 Phobos shadow events. Those sources of positioning
information are presently being analyzed to better con-
strain the orbital motion of Phobos. It is also possible that
other imaging systems, such as TES [Christensen et al.,
1992] and THEMIS [Christensen et al., 2004] may have
obtained useful positional constraints on the motion of
Phobos.
[55] Another possible use of Phobos shadow observations

is related to the brief thermal perturbation of the surface of
Mars as the shadow passes by. This approach was exploited
by Betts et al. [1995] to derive estimates of the thermal
inertia of the upper few millimeters of the surface at several
locations. The THEMIS and TES instruments may have
captured images of the shadow which could be exploited in
this way.

6. Summary

[56] In an attempt to understand the basic patterns of solar
eclipses on Mars, we have developed and applied a suit of
simple tools to describe the shape and motion of the shadow
of Phobos as it moves across the surface of Mars. That
motion is basically just a subdiurnal cycle of longitudinal
motion and an annual cycle of latitudinal motion. The
proximity of Phobos to Mars, and its location close to the
equator plane ensures that eclipse are frequent. Over most of
each year, there are an average of 3.22 shadow transits per
day.
[57] The shape of the shadow is a simple function of

distance from the subsolar point. When the shadow is near
the subsolar point, it is very nearly circular. As it moves
farther from the subsolar point, the shadow becomes

Figure 13. Polar view of shadow coverage. Same pattern
as northern half of Figure 12, but viewed from above the
north pole of Mars.

Figure 14. Shadow coverage at 13:4 synodic resonance.
As Phobos approaches Mars, under tidal influence, the
orbital period will decrease. When the ratio of synodic
orbital period of Phobos to synodic rotation period of Mars
is 3.25, the shadow pattern during a single eclipse season
will be as shown. The longitude of the center of the shadow
transit will repeat after 4 orbital periods, and the pattern will
be somewhat more regular than at present.
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elongated along the great circle which connects the sub-
solar point to the center of the shadow. Just before the
shadow cone passes off the surface of Mars, the shadow
outline is quite elongated.
[58] When the subsolar point is on the equator, the

shadow path is also on the equator, and the area covered
during the shadow transit has a nearly rectangular shape,
approximately 167� in length and 0.5� in width, with slight
widening at each end. As the subsolar point moves farther
from the equator, the shadow band shortens in longitudinal
extent, and curves away from the equator. As the subsolar
point nears its maximum distance from the equator, the
shadow cone passes poleward off the surface of Mars, and
there is a season during which no eclipses occur.
[59] Within the latitudinal range over which eclipses are

possible, they are fairly uniformly distributed. There is a
narrow band, approximately 4� wide and centered on the
equator, in which the coverage is complete. That is, during
each eclipse season, every point within that region experi-
ences at least one eclipse. Outside that band, the average
density of shadow coverage decreases slowly with increas-
ing distance from the equator.
[60] As the obliquity of Mars changes, the latitudinal

extent of the shadow path changes considerably. During
epochs when the obliquity is less than 21�, the eclipse
season lasts all year. As the obliquity increases beyond that
value, the durations of the eclipse seasons decrease.

[61] Acknowledgment. This work was partially supported by a grant
from the NASA Mars Data Analysis Program.
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